Nanomedicines to tackle myocardial infarction: where are we now and where are we going?

➔ Mónica P. A. Ferreira¹
➔ Hélder A. Santos¹, ², *

¹ Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
² Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014 Helsinki, Finland
*Correspondence
Cardiovascular diseases (CVD) are responsible for the highest mortality rates globally. About one-third of the CVD-related casualties derive from ischemic heart diseases, which cause an irreversible injury to the myocardium. As a result of the very limited capacity of the heart tissue to recover from the ischemic insult, this usually leads to remodeling and scarring of the cardiac tissue, eventually progressing to irreversible heart failure. Currently, there is no major discovery of an effective cure to restore the function of an injured heart. Therefore, there is an unmet need to find a permanent solution for patients suffering from ischemic heart disease (IHD) and heart failure. In this regard, nanoparticles made of biomaterials called the attention of the scientific community as potential platform to deliver different therapeutics to the injured heart. Particulate nanomedicines, currently at the pre-clinical stage, are arising as a promising tool to provide minimally invasive treatment, an important aspect to take into account for clinical translation and patient compliance, and specifically deliver therapeutics to the injured myocardium. Here, we discuss about the current knowledge on the nanomedicines investigated for myocardial infarction, and how we see they can help and support medical doctors in shaping the future of IHD treatments.

Key words: heart diseases, myocardial infarction, nanomedicines, targeting
HEART DISEASES AND NANO MEDICINES: CURRENT STATE

Ischemic heart disease (IHD): statistics and facts

The world has seen tremendous development in the medical field, significantly impacting the health of the global society over the past few decades. Recent examples include the Human Genome Project (Lander et al. 2001) targeted therapies for cancer (Tran et al. 2017), as well as the development of primary preventive (e.g. control and treatment of hypertension, hypercholesterolemia, diabetes, and smoking decline), symptom-management therapies (e.g. timely use of thrombolysis therapy and percutaneous coronary intervention (PCI)), as well as secondary prevention therapies (statins, beta-blockers, ACE-inhibitors, angiotensin receptor blockers, aspirin and diuretics) for patients with established cardiovascular diseases (CVD) (Reddy et al. 2015, Arnett et al. 2019). Particularly, therapies for ischemic heart disease (IHD) have dramatically decreased the world mortality by 40% (Mensah et al. 2017). However, an astonishing 17 million people still die of CVD globally, particularly from heart attacks and strokes. This accounts to approximately 31% of all deaths worldwide (WHO, 2017). In Europe, the impact of CVD on loss of productivity, combined with hospitalization and healthcare costs amounts to a total of €210 billion per year (EHN, 2017).

IHD are the main cause of death among Finns. Although the same trend in decrease of mortality is verified in Finland (Salomaa et al. 1996), and men’s and women’s age-standardized mortality has decreased by over 40%, IHD still causes one in five deaths in men and one in six deaths in women, with almost 10,000 casualties reported in 2017 (Official Statistics of Finland, 2017). Due to an aging population and sedentary life-style, in addition to the increase in incidence of co-morbidities, such as obesity, hypercholesterolemia, diabetes and hypertension, growing incidences of CVD are major drivers for the global myocardial infarction (MI) treatment market, expected to reach $1.7 billion by end of 2022 (Zion Market Research, 2017).

Nanomedicines for cardiovascular diseases

Myocardial Infarction (MI), commonly known as heart attack and inserted in the category of IHD,

Figure 1. Schematic representation of post-myocardial infarction left ventricular remodeling. The acute phase encompasses thinning and elongation of the fibrous scar within the infarcted zone. Subsequent left ventricular dilation is caused by diffuse myocyte hypertrophy associated with increased apoptotic cell death (not shown) and increase in interstitial collagen. This image was constructed using Medical Servier Art (Servier Medical Art, 2019).
leads to death of the area of cardiac tissue upon blockage of a coronary artery, ultimately develop-
ing to an irreversible ischemic cardiomyopathy and heart failure, compromising severely cardiac func-
tion (Figure 1). Due to the poor turnover of cardio-
myocytes and the inability of the heart to recover or regenerate from a cardiac insult, it is important to devise novel solutions to tackle the problem of irre-
versible heart failure.

Current therapeutic approaches to treat IHD, and more specifically MI, include secondary prevention pharmacological therapy stated above which decreases blood pressure, cardiac overload and risk of arrhythmia, as well as invasive procedures for restora-
tion of reperfusion and aid blood systemic distribution with pacemaker and ventricular assist devices. These mainly manage the patient’s symptomatology rather than restoring cardiac function, decreasing mortality and morbidity, and prevent to some extent the development of heart failure (Ibanez et al. 2018). Apart from heart transplantation (with its associated complications), despite continuous efforts put in the search for a cure for MI and heart failure, to date this has not been found.

The fundamentals of heart development and MI pathological processes at the cellular and molecular levels have been deeply investigated (Xin et al. 2013) in order to develop therapeutic solutions to restore car-
diac function after MI. Nanotechnology, and the de-
velopment of nanomedicines for repair/protection/
regeneration of the heart upon an ischemic event, took off only a few decades ago, being at the pre-
clinical stage of research for therapy of IHD. In fact, according to the European Medicines Agency, nano-
medicines are designed systems for clinical applications with at least one component at nanoscale size, which renders definable specific properties and character-
istics to this kind of therapeutic platform. The purposes of nanomedicines are to: (1) tackle unmet medical needs, e.g. integrating efficacious molec-
ules that otherwise could not be used because of their high toxicity and by exploiting multiple mechanisms of action; and (2) to maximize efficacy and reduce dose and toxicity, by allowing drug targeting, control the specific drug release, improve transport across biological barriers, and regulate preferential distribu-
tion within the body (e.g., in the ischemic myo-
cardial injury or in cancer lesion areas) (European Medicines Agency, 2019). Such therapeutic approach differs from the conventional drug therapy as it al-
 lows targeted delivery of therapeutics to the tissue of interest (in this case, the ischemic heart). The use of nanoparticles opens up a panoply of opportuni-
ties for new drug molecules that are very potent but possess poor physicochemical properties such as low solubility, easy degradation and enhanced toxicity: engineered nanoparticles protect labile cargos from degradation, as well as protecting the body from toxic effects of cargos with narrow therapeutic window that otherwise would distribute throughout the entire body.

It all started with simple liposomes, the most primitive forms of nanomedicines developed pri-
marily for cancer, but later applied to MI (Levchenko et al. 2012). As bare nanocarriers are quite unspe-
cific and are rapidly captured by the liver and retic-
uloendothelial system for clearance upon systemic administration, incorporation of stabilizers like pol-

Figure 2. Nanomedicine-based strategies developed to tackle ischemic cardiomyopathy. (ROS = reactive oxygen species). Reprinted with permission from reference (Mahmoudi et al. 2017).
ethylene glycol (PEG) to increase circulation time, and targeting moieties to direct the nanocarriers towards the ischemic cardiac tissue took place as early as 1995 (Khaw et al. 1995) in order to deliver more efficiently therapeutic drugs. From this point onwards, several nanomedicines have been developed for targeted drug delivery for therapy of MI, by using the most varied (bio)materials and targeting strategies (Ferreira et al. 2017, Ferreira et al. 2018). As a fast advancing field, nanoplatforms have been developed with mechanisms of action such that they can: (1) target and break down coronary artery plaques and prevent injuries caused by stenosis or occlusion of arteries – preventive nanomedicines; and (2) reduce adverse effects of reperfusion injuries and promote cardiac repair/salvage/regeneration after MI, through sustained and targeted delivery of cells, biomolecules and paracrine factors – therapeutic nanomedicines (Figure 2) (Mahmoudi et al. 2017). Our focus in this short commentary is mainly on the therapeutic nanomedicines for MI.

Different materials and different targeting strategies are employed to achieve a higher nanoparticle accumulation in the heart and higher therapeutic efficacy in different animal models (Ferreira et al. 2015, Mahmoudi et al. 2017). For example, SOMag5 magnetic nanoparticles are being used to aid the engraftment of embryonic and induced-cardiomyocyte cells to ischemic myocardium using a strong magnetic field, improving heart repair processes (Ottersbach et al. 2018). Liposomes have been functionalized with antibodies targeting the overexpressed angiotensin II type 1 receptor in the heart upon MI (Dvir et al. 2011). Due to advantages such as high drug encapsulation efficiency, polymeric multifunctional poly(glycidal methacrylate) nanoparticles were developed for the transport of a combination of two therapeutics with antioxidant and anti-hypertrophic properties (Hardy et al. 2015). To tackle the invasive route of administration, calcium phosphate nanoparticles of very small size (50 nm) were developed for administration via inhalation route, for rapid translocation from the pulmonary tree to the bloodstream, and direct transport to the myocardium and targeted release of their therapeutic cargos (Miragoli et al. 2018). These are a few examples of the efforts put to develop nanomedicines, at the moment in the preclinical stage, to improve the quality of life of patients suffering from IHD in the future.

In Finland, and particularly at the University of Helsinki, such work has also been developed. At the group of Nanomedicines and Biomedical Engineering (www.3iregeneration.com), we have used porous silicon (PSi) and spermine-acetalated dextran to formulate nanomedicines for targeted drug delivery for therapy and imaging of cardiac ischemic injury, work that culminated in a recent Ph.D. thesis (Figure 3) (Ferreira, 2017). These materials were chosen due to their intrinsic properties, such as biocompatibility, biodegradability, customized particle preparation, surface functionalization, efficient drug loading and encapsulation, and tunable release of the therapeutic cargos. Both PSi and dextran-based nanoparticles were stabilized for higher circulation time in the bloodstream, and further decorated with atrial natriuretic peptide (ANP) for targeting purposes because the release of natriuretic peptides and the intrinsic increase in expression of their receptors is one of the markers for cardiac injury. Both PSi and dextran nanoparticles showed good cytocompatibility in cardiac cell cultures and biocompatibility (Tölli et al. 2014, Ferreira et al. 2016, Ferreira et al. 2017). We have also demonstrated specific cardiac cell–nanoparticle interactions through natriuretic peptide receptors, in the presence of ANP in the nanoparticles’ surface, showing the successful development of targeted nanomedicines to the heart (Ferreira et al. 2016, Ferreira et al. 2018). Upon labeling the nanoparticles with radioisotope Indium-111, the nanoparticles displayed a preferential accumulation and selectivity towards the endocardial layer of the ischemic (but not normal) heart in a rat MI model (Figures 3A and 3B). In vivo delivery of a cardioprotective small drug molecule (Kinnunen et al. 2018) by the developed PSi-nanoplatform showed attenuation of the extracellular signal-regulated kinase pathway that is involved in the hypertrophic signaling of the injured heart (Ferreira et al. 2017). In addition, the development of biofunctionalized and dual-loaded dextran-based nanoparticles for potential application in heart cellular reprogramming was proven successful, by utilizing acidic pH-triggered drug delivery of the two poorly water-soluble cargos. Subsequent treatment of cardiac non-myocytes showed therapeutic modulation of key signaling pathways involved in the direct fibroblast reprogramming into cardiomyocytes (Ferreira et al. 2018). Thus, the works described here provide insights that may be useful for the future development of nanomedicines with cardioprotection and cardiac regeneration therapeutic purposes for application in the clinic.
CONCLUSIONS
Overall, although the advancement of nanomedicines field for therapy of IHD is still in the pre-clinical stage, it definitely shows therapeutic potential for promoting repair and/or regeneration of the injured heart tissue, especially in the acute stage of MI. However, translation to the clinical setting remains elusive, where limitations like the ability to overcome biological barriers, time-consuming and complex preparation of the nanomedicines, their reproducibility and scalability, are factors that are yet challenging to be addressed in the clinical development and commercialization. Furthermore, new cardiac markers that would allow a more efficient targeting are still to be discovered, being that some of the research focus in this field is shifting towards other nanoparticle-related therapeutic strategies, such as the utilization of extracellular vesicles, due to their discovered intrinsic cargos and roles in cellular processes that possess potential to improve cardiac function (Bollini et al. 2018). We believe that with the technological advancements where novel and more advanced nanomedicines are being developed, there is an increased hope that these could be translated to the clinic in the near future. As more and more proof-of-concept nanomedicines emerge for MI therapy, new insights on the nanomedicines’ particularities, versatility, and advantages offer a wide range of opportunities for the development of adaptable tools to fight MI and heart failure.

Figure 3. Targeting strategy with imaging modality of nanomedicines to the MI. (A) Heart-targeted nanomedicines in the blood stream (blue triangle), ANP targeting moiety (yellow arrow), stabilizing polymer coat (green arrow) and nanocarrier-loaded drug (red arrow). (B) Representative sagittal single-photon emission computed tomography (SPECT) images, showing the biodistribution of the nanoparticles at 10 min after intravenous administration in a MI rat model. White arrows indicate the location of the heart. Undecylenic acid modified thermally hydrocarbonized porous silicon NPs without (Un-P-D) and with (Un-P-D-ANP) targeting atrial natriuretic peptide. (C) Representative hematoxylin and eosin (H&E) stainings and autoradiograms of apical, basal and medial rat heart sections treated with the targeted nanomedicines. Red areas demonstrate higher regional nanoparticle accumulation. Reprinted and modified with permission from reference (Ferreira et al. 2017).
Nanolääkkeet sydäninfarktin hoidossa: missä mennään nyt ja mihin suuntaan kehitys vie?

➔ Mónica P. A. Ferreira¹
➔ Hélder A. Santos¹, ²,

¹ Lääketutkimusohjelma, Farmaseuttisen kemian ja teknologian osasto, Farmasian tiedekunta, Helsingin yliopisto, FI-00014 Helsinki
² Helsinki Luonnontieteiden instituutti (HiLIFE), Helsingin yliopisto, FI-00014 Helsinki

*Kirjeenvaihto

Avainsanat: sydänraus, sydäninfarkti, nanolääkkeet, kohdentaminen

Conflict of interest: No announced conflict of interests.
REFERENCES

Bollini S, Smits AM, Balbi C, Lazzarini E, Ameri P: Triggering Endogenous Cardiac Repair and Regeneration via Extracellular Vesicle-Mediated Communication. Front Physiol 9: 1497, 2018

Ferreira MPA: Multifunctional Nanoparticles for Targeted Drug Delivery and Imaging for Ischemic Myocardial Injury. Dissertationes Scholae Doctoralis Ad Sanitatem Investigandam Universitatis Helsinkiensis, 67/2017, University of Helsinki, Helsinki 2017

Zion Market Research: Global Myocardial Infarction Treatment Market: By product, Distribution, Type, Size, Share, Analysis, Segment and Forecast 2016 – 2022, 2017