Adapting to Technological Change – Employees’ Experiences on the Uptake of Automated Dispensing Cabinets in Kuopio University Hospital

Kati Sarnola*
Research Scientist, PhD (Pharm), MSc (Econ), Specialist in Medication Review
Finnish Medicines Agency/University of Eastern Finland, Business School
kati.sarnola@fimea.fi

Minna Kurttila
MSc (Pharm)
Kuopio University Hospital Pharmacy
minna.kurttila@kuh.fi

Toivo Naaranlahti
Docent, PhD (Pharm)
University of Eastern Finland, School of Pharmacy
toivo.naaranlahti@elisanet.fi

Susanna Saano
PhD (Pharm)
Kuopio University Hospital Pharmacy
susanna.saano@kuh.fi

Helena Kantanen
Senior Lecturer, PhD
University of Eastern Finland, Business School
helena.kantanen@uef.fi

*Correspondence

ABSTRACT

Introduction: As a part of automation technology change in hospitals, one major change that has revolutionized the practice of hospital medicine supply has been the introduction of automated dispensing cabinets in recent decades. Automated dispensing cabinets are computer-driven dispensing systems designed to prevent medical errors, promote better patient care and safety, and increase the efficacy of storage management. From the employee perspective, cabinets are known to improve workflow and increase work efficiency; however, research on the healthcare professionals’ perceptions of the change process in the uptake of automated dispensing cabinets is lacking.

Aims: The aim of this study was to explore employees’ experiences and positive and negative factors that have affected employees’ ability to adapt to the uptake of automated dispensing cabinets.

Material and methods: An electronic questionnaire for hospital personnel (n=359) was distributed in Kuopio University Hospital in August 2016. The questionnaire took the form of narratives. The data was analyzed with content analysis and quantification.

Results: Forty employees responded the questionnaire. The most common positive factors were that change was considered a logical, technological continuum (n=14) and that the change had streamlined and facilitated work (n=13). The most common negative factors were that work had decelerated due to the change (n=22) and that employees were unable to affect the change (n=10).

Conclusions: Positive factors that enhanced employees’ ability to adapt were most often work performance and efficiency-related factors, while negative factors that diminished employees’ ability to adapt were typically work performance and efficiency-related and individual-related factors. This study concludes that it is crucial that change benefits practical work and that empowering teams and managers and engaging the organizational culture are a part of everyday work, which then naturally translates to change management.

Keywords: Automated dispensing cabinet, Automation, Change Adaptation, Pharmacy services, Hospital Personnel, Hospital, Surveys and questionnaires, Narratives
INTRODUCTION
Continuously changing working environments have inspired organizations and individuals to consider new ways of thinking, working, and leading in order to remain competitive (Sackmann et al. 2009). To this day, the continuous need for change has been recognized and adapting to change has become one of the supporting themes of change management (Cummings and Worley 2005, Senior and Swales 2010). Based on earlier research conducted during recent decades, multiple factors linked to the individual, personnel, power, and social relations, and work performance and efficiency are known to affect individuals’ ability to adapt to change (Figure 1). In healthcare, patient-related factors may also affect healthcare professionals’ ability to adapt to change and their resistance to change (Landaeta et al. 2008, Fiorio et al. 2018). Resistance can be best addressed and adapting supported when we study individuals’ perceptions and experiences, and understand why change is accepted or rejected (Davis and Songer 2009, Chung et al. 2012).

The uptake of automation technology is one of the major changes that has revolutionized the work in the healthcare sector during the recent decade (Pedersen et al. 2015, ASHP 2018, Berdot et al. 2018). Several innovations regarding, for example, medicine storage, surgery, and indoor logistics have been introduced to increase the operability and functionality of health-care and medicine supply, decrease errors, and thus improve patient safety (Metsämuuronen et al. 2018). In hospital settings, automated dispensing cabinets are a major technological innovation in medicine supply. Automated dispensing cabinets are computer-driven dispensing systems that control and track the dispensing of medicines in order to reduce medicine dispensing times and dispensing errors, improve storage capacity and stock control, and increase the allocation of staff to tasks that require special expertise (Franklin et al. 2008, Lehnborn et al. 2013, Metsämuuronen et al. 2018, Atthainen et al. 2019). They were first introduced in American hospitals in the 1980s (Harolds and Harolds 2016) and were deployed in 97% of all American hospitals by 2014 (Pedersen et al. 2015).

Healthcare professionals’ perceptions toward automated dispensing cabinets have not been widely studied, and only some studies on the subject have been published. Studies have reported improvements in workflow, work efficiency, and job safety for nurses after the uptake of automated dispensing cabinets (Franklin et al. 2007, 2008, Hull et al. 2010, Rochais et al. 2014, Zaidan et al. 2016, Douglas et al. 2017). A single study also reported an increase in employee frustration after the introduction of cabinets (Hull et al. 2010). However, research on healthcare professionals’ perceptions of the change process in the uptake of automated dispensing cabinets is lacking. The aim of this study was to explore employees’ experiences with the uptake of automated dispensing cabinets, and the positive and negative factors that have affected employees’ ability to adapt to their uptake in Kuopio University Hospital.

<table>
<thead>
<tr>
<th>Individual</th>
<th>Work performance and efficiency</th>
<th>Patient</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Affects, knowledge, attitudes and beliefs</td>
<td>• Benefiting or harming work performance</td>
<td>• Patient care and wellbeing</td>
</tr>
<tr>
<td>• Desire or fear of change</td>
<td>• Technology, innovations, streamlining, processes, practices</td>
<td></td>
</tr>
<tr>
<td>• Satisfaction, motivation and commitment</td>
<td>• Training, piloting, orientation</td>
<td></td>
</tr>
<tr>
<td>• Self-esteem and self-efficacy for coping with changes</td>
<td>• Ergonomics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Personnel, power, and social relations</th>
<th>Communication</th>
<th>Collegial support or resistance</th>
<th>Managerial support of resistance</th>
<th>Social and authority relations and hierarchy</th>
<th>Trust</th>
<th>Participation in the change process and decision making</th>
</tr>
</thead>
</table>

Table 1. The uptake of automated dispensing cabinets in Kuopio University Hospital. (remodelled from: Kurttila et al. 2016)

<table>
<thead>
<tr>
<th>Key aims of the development project</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>• User-oriented innovative development</td>
<td>• 2011: Initial planning</td>
</tr>
<tr>
<td>• Efficiency improvements in medicine supply in wards with the launch of automated dispensing cabinets</td>
<td>– Logistics working group and hospital pharmacy began to plan new possibilities for the hospital medicine supply</td>
</tr>
<tr>
<td>• Automated dispensing cabinets as medicine storage and supply systems are situated next to patient rooms and operating rooms</td>
<td>– Market mapping for potential suppliers of automated dispensing cabinets</td>
</tr>
<tr>
<td>• Utilization of medical and patient records in medicine supply and care processes</td>
<td>– Survey on the time used for medicine supply in Anaesthesia and Surgery Unit and in wards, June 2011</td>
</tr>
<tr>
<td>– Integration of patient records, hospital pharmacy records, user management, and identification technology (e.g., barcode readers) with automated dispensing cabinets</td>
<td>• 2012: Planning and piloting</td>
</tr>
<tr>
<td>• User orientation and training to automation technology change</td>
<td>– Competitive tendering for the suppliers</td>
</tr>
<tr>
<td>– Orientation and training for all users by hospital pharmacy and by the device supplier</td>
<td>– Pilot 1: Anaesthesia and Surgery Unit piloted wireless networks, computers, and barcode readers in operating room setting, February–May 2012</td>
</tr>
<tr>
<td></td>
<td>– Simulation 1: Piloting the first version of the automated dispensing cabinet in operating rooms for 100 persons who filled out a form for feedback, October–December 2012</td>
</tr>
<tr>
<td></td>
<td>– Competitive tendering for the suppliers</td>
</tr>
<tr>
<td></td>
<td>– Pilot 4: Recovery ward unit piloted the new card reader and the communication between IT systems, November–December 2014</td>
</tr>
<tr>
<td></td>
<td>– Simulation 2: Automated dispensing cabinet placed in the operating room, January 2014</td>
</tr>
<tr>
<td></td>
<td>– Orders of automated dispensing cabinets, June 2014</td>
</tr>
<tr>
<td></td>
<td>– Pilot 2: Anaesthesia and Surgery Unit piloted the user identification to the automated dispensing cabinets and filling the cabinets, April–June 2014</td>
</tr>
<tr>
<td></td>
<td>– Pilot 3: Intensive Care Unit piloted the usability of the cabinets, the communication between IT systems and the user identification, of which the third led to changing the card reader, October 2014–May 2015</td>
</tr>
<tr>
<td></td>
<td>– Pilot 4: Recovery ward unit piloted the new card reader and the communication between IT systems, November–December 2014</td>
</tr>
<tr>
<td></td>
<td>– Pilot 5: Anaesthesia and Surgery Unit piloted the communication between IT systems and was familiarized with the new working model, November–December 2014</td>
</tr>
<tr>
<td></td>
<td>– Moodle training and exams for personnel, 313 persons were signed up for the orientation, from 2014 onwards</td>
</tr>
<tr>
<td></td>
<td>– Orientation for personnel by the supplier, from 2014 onwards</td>
</tr>
<tr>
<td></td>
<td>• 2015: Installation, preparation, and uptake</td>
</tr>
<tr>
<td></td>
<td>– Installation, preparation, and uptake of the automated dispensing cabinets</td>
</tr>
<tr>
<td></td>
<td>– Pilot 6: Women’s acute ward piloted the communication between IT systems and was familiarized with the new working model, January–February 2015</td>
</tr>
<tr>
<td></td>
<td>• 2016: Action</td>
</tr>
<tr>
<td></td>
<td>– By the end of 2016, automated dispensing cabinets had been operating for 1 year and 8 months</td>
</tr>
</tbody>
</table>
MATERIAL AND METHODS

Research context
The study was conducted in Kuopio University Hospital, in which multiple changes, such as building new sites and developing and streamlining ways of working, had taken place in recent years. A large-scale renewal in medical care and supply was conducted in 2011–2015, when over 40 automatic dispensing cabinets were deployed. The renewal was conducted as a user-oriented innovative change that allowed the employees to participate in the change process (Kurttila et al. 2016, Table 1).

This study was conducted in two units of Kuopio University Hospital with the longest experience in using automatic dispensing cabinets since their implementation in the Surgery and Intensive Care Unit. The personnel in these two units were also involved in planning and piloting the deployment of cabinets (Table 1). The study population was focused on nurses, specialist nurses, physicians, specialist physicians, and medical and nursing students working in the two units.

Data collection
Employees’ experiences with the uptake of automated dispensing cabinets were studied using an electronic questionnaire (Eriksson and Kovalainen 2008, Fowler Jr. 2014). Electronic research refers to research activities that are conducted via new technology, such as computers or mobile devices (Eriksson and Kovalainen 2008). An electronic questionnaire was chosen so that employees could participate in the study in whatever time and place was suitable for them, as participants were employees working in various working hours. Furthermore, in comparison to e.g. interview study, electronic survey enabled collecting more answers in a short period of time from a clearly defined target group, e.g. the personnel of a hospital (Turunen 2008). In the questionnaire, participants were asked to share their experiences with narratives. Narratives can be described as stories to a specific audience at a specific time and in a specific context (Eriksson and Kovalainen 2008, Hämeen-Anttila and Katajavoitto 2008; Vaismoradi et al. 2013). The aim of the analysis was to summarize, classify, and make key interpretations of the data (Figure 2).

Content analysis can be done deductively, meaning it is based on the earlier literature, inductively, meaning categorization arises from the data, or by combining these two approaches. In this study, categories were formed deductively based on the earlier literature (Eriksson and Kovalainen 2008, Hämeen-Anttila and Katajavoitto 2008, Vaismoradi et al. 2013). The aim of the analysis was to summarize, classify, and make key interpretations of the data (Figure 2).

Content analysis can be done deductively, meaning it is based on the earlier literature, inductively, meaning categorization arises from the data, or by combining these two approaches. In this study, categories were formed deductively based on the earlier literature. Subcategories were formed inductively, meaning they arose from data. In order to increase the reliability of the analysis, quantifications and tabulations were also used (Silverman 2013). Quantifications were concluded from spontaneous mentions of topics in each narrative. Each topic was quantified once per narrative, regardless of multiple mentions in the same response.

The narratives were analysed with content analysis (Eriksson and Kovalainen 2008, Hämeen-Anttila and Katajavoitto 2008, Vaismoradi et al. 2013). The aim of the analysis was to summarize, classify, and make key interpretations of the data (Figure 2).

The narratives were analysed with content analysis (Eriksson and Kovalainen 2008, Hämeen-Anttila and Katajavoitto 2008, Vaismoradi et al. 2013). The aim of the analysis was to summarize, classify, and make key interpretations of the data (Figure 2).

Content analysis can be done deductively, meaning it is based on the earlier literature, inductively, meaning categorization arises from the data, or by combining these two approaches. In this study, categories were formed deductively based on the earlier literature. Subcategories were formed inductively, meaning they arose from data. In order to increase the reliability of the analysis, quantifications and tabulations were also used (Silverman 2013). Quantifications were concluded from spontaneous mentions of topics in each narrative. Each topic was quantified once per narrative, regardless of multiple mentions in the same response.

Data analysis
The narratives were analysed with content analysis (Eriksson and Kovalainen 2008, Hämeen-Anttila and Katajavoitto 2008, Vaismoradi et al. 2013). The aim of the analysis was to summarize, classify, and make key interpretations of the data (Figure 2).

Content analysis can be done deductively, meaning it is based on the earlier literature, inductively, meaning categorization arises from the data, or by combining these two approaches. In this study, categories were formed deductively based on the earlier literature. Subcategories were formed inductively, meaning they arose from data. In order to increase the reliability of the analysis, quantifications and tabulations were also used (Silverman 2013). Quantifications were concluded from spontaneous mentions of topics in each narrative. Each topic was quantified once per narrative, regardless of multiple mentions in the same response.

The narratives were analysed with content analysis (Eriksson and Kovalainen 2008, Hämeen-Anttila and Katajavoitto 2008, Vaismoradi et al. 2013). The aim of the analysis was to summarize, classify, and make key interpretations of the data (Figure 2).

Content analysis can be done deductively, meaning it is based on the earlier literature, inductively, meaning categorization arises from the data, or by combining these two approaches. In this study, categories were formed deductively based on the earlier literature. Subcategories were formed inductively, meaning they arose from data. In order to increase the reliability of the analysis, quantifications and tabulations were also used (Silverman 2013). Quantifications were concluded from spontaneous mentions of topics in each narrative. Each topic was quantified once per narrative, regardless of multiple mentions in the same response.

Characteristics of the respondents and the narratives
A total of 40 employees (11%) participated in the study. The average age of the respondents was 45 years, ranging from 23 to 60 years. The average job tenure in the current position was 14 years, ranging from 0 to 22 years. The majority of the respondents (n=37) acted as (specialist) nurses, two as (specialist) physicians, and one as a supervisory nurse or physician. The majority of the respondents (n=36) used automated dispensing cabinets daily, while one respondent used cabinets weekly, and one less than monthly. Two respondents had not used the cabinets.

The length of the narratives varied. The average length was approximately half a sheet (A4 sheet with font Times New Roman 12 and line spacing 1.5), varying from a single row to 37 rows. Narratives consisting of single rows often explained that the respondent did not have experience using the cabinets.

Ethical considerations
The study was not classified as a medical- or health-related, human-targeting study introduced in the
Positive factors affecting employees’ ability to adapt to the change

The most common positive factors affecting employees’ ability to adapt to the change were related to work performance and efficiency (Table 3). A third of the respondents considered the uptake of the automated dispensing cabinets a logical continuum in the technological development of the working environment (n=14) and that the uptake of the cabinets streamlined and facilitated the work (n=13). Respondents commented that the use of automated dispensing cabinets was quicker and easier compared to the non-automated medicine storage systems. Four respondents mentioned that adequate training and orientation helped them to adapt to the uptake of automated dispensing cabinets.

In addition to work performance- and efficiency-related factors, individual- and personnel-, power-, and social relations-related factors influenced the adaptation in a positive manner. Eight respondents felt they had a chance to have an effect on the change. They reported they were given the opportunity to test the cabinets beforehand and to give feedback and improvement proposals, leading to the feeling of being heard. Five respondents considered that collegial support had been an important factor in support of their adaptation.

Negative factors affecting employees’ ability to adapt to the change

The most common negative factors affecting employees’ ability to adapt to the change were also related to work performance and efficiency (Table 4). Half of the respondents (n=22) considered that automated dispensing cabinets decelerated the work, mainly due to technical difficulties. The respondents considered that technical difficulties were commonly caused by inactivity and errors in the label printer or cabinets lacking refills. Six respondents maintained that inadequate orientation and training had negatively influenced their change experience and would have liked more proper training with the cabinets. Individual factors were also major negative influences in the change adaptation. Ten respondents stated that they had not been given a chance to affect the change. The respondents felt that the employees should have been more involved in the planning of the change, as they are the ones who will be using the cabinets every day. Five respondents did not consider automated dispensing cabinets beneficial; instead, they felt that employees had put time and effort into working with cabinets without gaining any benefits from them. From personnel-, power-, and social relations-related factors, five respondents considered that change resistance and negative feedback from colleagues had negatively influenced their adaptation.

DISCUSSION

Main results

This study showed that employees’ ability to adapt to a technological change was affected by several positive and negative factors. The most common positive factors that supported the adaptation were related to work performance and efficiency. Employees with positive attitudes considered that the change was a logical continuum that streamlined and facilitated their work. These results are supported by earlier studies (Franklin et al. 2008, Rochais et al. 2014, Zaidan et al. 2016). This indicates that the employee’s approach to the introduction of new technologies is highly practical: the change is considered positive once it provides benefits regarding practical work.

According to this study, the employees’ ability to have an effect on the change was also reported to enhance their ability to adapt. This is commonly acknowledged in change management literature (e.g. Wanberg and Banas 2000, Tsaoouis and Vakola 2018) and in studies on change implementation in the healthcare setting (e.g. Kumar and Kwong 2011, Algauer et al. 2015, Ylittömänen et al. 2018). The staff who participated in this study were reportedly involved in planning and piloting the deployment of automated dispensing cabinets. What is notable is that even though employees were reportedly engaged in the change, they felt that they did not have an opportunity to influence the change and that they were not heard. Hence, despite their participation in the process, engaging employees appears challenging. At least, orientation and training, engaging the organizational culture, supporting teams that trust their members and communicate openly, and immediate managers who provide feedback and treat everyone fairly have been suggested as cues to enhance employee engagement and hospital performance (Lowe 2012, Bulkapuram et al. 2015).

Table 3. Positive factors affecting employees’ ability to adapt to the uptake of automated dispensing cabinets.

<table>
<thead>
<tr>
<th>Topic</th>
<th>n</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work performance and efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change is a logical, technological continuum</td>
<td>14</td>
<td>“I think this change (uptake of automated dispensing cabinets) is a logical continuum in the development from medicine cabinets maintained by clinics toward automated dispensing cabinets and clinical pharmacy” (Respondent 19)</td>
</tr>
<tr>
<td>Streamlines and facilitates the work</td>
<td>13</td>
<td>“Earlier, I used the regular medicine cabinet in the clinic. Taking medicines from an automated dispensing cabinet is quicker” (Respondent 7)</td>
</tr>
<tr>
<td>Adequate orientation and training</td>
<td>4</td>
<td>“Orientation and training were provided in the use of automated dispensing cabinets” (Respondent 29)</td>
</tr>
<tr>
<td>Individual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to have an effect on the change</td>
<td>8</td>
<td>“Testing was conducted in our unit, and we all got to influence the development work of automated dispensing cabinets by providing feedback. And it felt like we were listened to” (Respondent 24)</td>
</tr>
<tr>
<td>Personnel, power, and social relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collegial support</td>
<td>5</td>
<td>“Colleagues helped in the use of automated dispensing cabinets, which helped a lot in adapting to this change” (Respondent 22)</td>
</tr>
<tr>
<td>Patient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promoting better patient care and safety</td>
<td>1</td>
<td>“Patient safety has improved . . . this (change) is for the benefit of the patient” (Respondent 36)</td>
</tr>
</tbody>
</table>

* n refers to the number of spontaneous mentions of each topic in the data. Each topic was quantified once per response, regardless of any multiple mentions in the same response.

Medical Research act (9.4.1999/488) and, therefore, did not require permission from the Research Ethics Committee of the Hospital District. The study also did not require a statement from the Committee on Research of the University of Eastern Finland (University of Eastern Finland 2018). The ethics of this study adheres to the ethical principles of the National Advisory Board on Research Ethics for research in the humanities and social and behavioral sciences (National Advisory Board on Research Ethics 2009). Organizational permission from Kuopio University Hospital was granted.
Table 4. Negative factors affecting employees’ ability to adapt to the uptake of automated dispensing cabinets.

<table>
<thead>
<tr>
<th>Topic</th>
<th>n1</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work performance and efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deceleration of the work</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Inadequate orientation and training</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Weaker ergonomics at work</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Individual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inability to have an effect on the change</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Change is found neither beneficial nor positive</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Personnel, power, and social relations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change resistance of the colleagues</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

* n refers to the number of spontaneous mentions of each topic in the data. Each topic was quantified once per response, regardless of any multiple mentions in the same response.

The most common negative factors that may diminish employees’ ability to adapt to change were related to work performance and efficiency as well as individual-related factors, which is very much in line with the positive factors. Whereas a change that streamlines and facilitates work is considered positive, a change that decelerates work is deemed negative. The results of this study are consistent with earlier research, stating that automation changes that have a negative effect on the work may cause resistance (Hull et al. 2010, Metsämäki et al. 2018). However, it should be noted that learning new routines may be met with resistance at the beginning of the process, but once they are implemented, the overall impression may turn to positive (Stanleigh 2013). This study was conducted a little over a year after the introduction of automated dispensing cabinets. If it were to be repeated now, the employees’ experiences with the cabinets might appear more positive.

Negative factors that decrease employees’ ability to adapt can and should be seen as tools for organizational learning (Knowles and Linn 2004, Ford et al. 2008). According to this study, deceleration of the work, having no influence on the change, inadequate training, collegial resistance, and the perception that the change was not beneficial were typical factors that diminished employees’ ability to adapt. In forthcoming changes, employee adaptation can be enhanced by fully engaging the employees in the change from the very beginning of the process and by providing information and training to the entire staff.

Strengths and limitations

This study was conducted as a questionnaire that took the form of narratives, which can be considered a suitable method for studying individuals’ experiences and perceptions (Rhodes and Brown 2005, Flory and Iglesias 2010). Narratives can also be considered suitable for studying organizational changes, because they allow for understanding and rationalizing the change, learning from it, and developing the organization (Puusa et al. 2014). Written narratives can be considered especially beneficial in studying contradictory topics, because face-to-face methods, such as interviews, may provide a positivistic view on the studied topic. Requesting responses in written form was also considered beneficial because respondents could provide their answers at a time point that was most suitable for them. It should be noted that although the response rate can be considered low, the value and the aim of qualitative analysis is not in its generalizability, but in its transferability (Hämeen-Anttila and Katajavuori 2008). The current data can be seen adequate to cast light to employees’ experiences and perceptions, and thus the results can be considered transferable and beneficial in other settings. Nonetheless, it is possible that the respondents of this study held more positive views compared with those who did not participate in the study (Tolonen 2005). This further highlights the importance of presented conclusions.

Instructions for writing the narratives were provided with four supporting questions. These questions were especially related to the change process, influencing the change, and colleagues’ attitudes toward the change. Therefore, it is evident that the narratives were focused on these topics; thus, they do not provide an all-encompassing list of all factors that might influence employees’ ability to adapt to change (Rhodes and Brown 2005, Flory and Iglesias 2010). For that reason it is understandable that some topics (e.g., patient and medication safety) were not emphasized in this study, but were found crucial in other studies with slightly different viewpoints (e.g., Fanning et al. 2016, ASHP 2018, Berdot et al. 2018). Analyzing the data with content analysis enabled a systematic examination of the topics that were at the core of the study (Eriksson and Kovalainen 2008, Hämeen-Anttila and Katajavuori 2008, Vaisanen et al. 2013). Reliability of the analysis was increased with quantification and tabulations (Silverman 2013).

This study is limited to employees’ experiences with a technological change in two units of a single university hospital. Therefore, the results of this study cannot be generalized to all Finnish hospitals. Nevertheless, this study provides valuable knowledge to be taken into account in future technological changes in hospital and healthcare settings, such as in the uptake of intelligent medication carts and in the development of closed loop systems. Furthermore, this study highlights important factors related to a successful change implementation for consideration in any change management.

CONCLUSIONS

The most common positive factors that enhanced employees’ ability to adapt to the uptake of automated dispensing cabinets were related to work performance and efficiency. In practice, when the change streamlined and facilitated work, the employees seemed to welcome it with enthusiasm. Negative factors that diminished employees’ ability to adapt
TIIVISTELMÄ

Teknologiamuutokseen sopeutuminen – työntekijöiden kokemuksia älylääkekaappien käyttöönotosta Kuopion Yliopistollisessa sairaalassa

→ Kati Sarnola
Tuoteja, Faf, KTM, LHA
Lääkealan turvallisuus- ja kehittämisskeskus Fimea / Itä-Suomen yliopisto,
Kauppatieteiden laitos
kati.sarnola@fimea.fi

→ Minna Kurttila
Provisor
Kuopion yliopistollisen sairaalan sairaala-apteekki
minna.kurttila@kuh.fi

→ Toivo Naaranlahti
Dosentti, FaT
Itä-Suomen yliopisto,
Farmasian laitos

→ Susanna Saano
Provisor, FaT
Kuopion yliopistollisen sairaalan sairaala-apteekki
susanna.saano@kuh.fi

→ Helena Kantanen
Yliopistollehtori, FT
Itä-Suomen yliopisto,
Kauppatieteiden laitos
helena.kantanen@uef.fi

*Kirjeenvaihto

Johdanto: Osana sairaala-automatioteknologian käyttöönottoa älylääkekaappien käyttöönotto on mul-
listattu sairaahoidon lääkejakelun värteisten vuosikynn-
menien aikana. Älylääkekaappit ovat tietokoneohjattavia
lääkkeiden jakelu- ja säilytysjärjestelmiä, joiden tarkoi-
tuksena on vähentää virheitä lääkejakelussa sekä par-
anta potilas- ja lääkitysturvallisuutta ja varastonhallintaa.
Älylääkekaapit tiedetään lisäävän työn tehokkuutta
ja heikentävän työn tehokkuutta sekä henkilönä liittyv-
neitä tekijöitä tai mahdollisesti muutosten vaikutuksia

→ Tavoitteet: Tämän tutkimuksen tavoitteena oli tut-
kia työntekijöiden näkemyksiä älylääkekaappien
käyttöönoton muutosprosessissa sekä työntekijöi-
den soteutumista edistäviä ja heikentäviä tekijöitä.

→ Aineisto ja menetelmät: Kysely, jossa Kuopion yli-
opistollisen sairaalan työntekijät (n=359) jakovat ko-
ekemuksiaan antennavien muodossa elokuussa 2016. Aineisto analysoitiin sisällönanalyysia käyttäen
ja kvantifioinnilla.

→ Tulokset: Yhteensä 40 työntekijää vastasi kyselyyn.
Muutokseen soneutumista edistävät työntekijät nousevat
kohteen logiikkaan ja tarkoituksen kykytä vähentää
virheitä ja heikentää työn tehokkuutta. Älylääkekaapit

→ Avainsanat: älylääkekaappi, automaatio, muutos,
lääkehuolto, sairaala-apteekki, sairaalan hoitohenki-
lökunta, kysely, narratiivi

Acknowledgements and conflicts of interest
This study was conducted in the Business School
of the University of Eastern Finland. The authors did
not receive specific financial support or grants to
conduct this study and declare no conflicts of inter-
est. The authors would genuinely like to thank all
respondents for their valuable input to this research.

were typically related to work performance and effi-
ciency as well as individual factors, indicating that a
change that decreases work or which prevents em-
ployees from having an influence on its implementa-
tion poses challenges. This study concludes that it is crucial that change benefits practical work, and
that empowering teams and managers and engaging the organizational culture are part of everyday work, which then naturally translates to change manage-
ment.
REFERENCES

Cummings TG, Worley CG: Organization Development and Change. South-Western, a part of Cengage Learning, Mason, 2005

Davis KA, Songer AD: Resistance to IT Change in the AEC Industry: Are the Stereotypes True? J Constr Eng Manag 12: 1324–1333, 2009

Ends E, Page C: Organizational team building. Windthrop, Cambridge, 1917

Fioreto CV, Gorli M, Verrillo S: Evaluating organizational change in health care: The patient-centered hospital model. BMC Health Serv Res 18: 1–15, 2018

Kurtilla M, Hein-Tanninen M, Koikkalainen T, Naaranlahti T, Sairanlan Ilakokeluon kehittaminen automaatiota hyödyntäen. Final report of the development project. Kuopio University Hospital Pharmacy, Kuopio University Hospital District, Kuopio, 2016

Metsamuuronen R, Kurttila M, Naaranlahti T: The utilisation of automation in medicine supply process in hospitals — now and in the future. Dosis 34: 109–114, 2018

National Advisory Board on Research Ethics: Ethical principles of research in the humanities and social and behavioural sciences and proposals for ethical review. www.tenk.fi/files/tenk/fl/files/ethicalprinciples.pdf. Accessed October 20, 2018

Tolonen H: Towards the High Quality of Population Health Surveys. Standardization and Quality Control. Publications of the National Public Health Institute A27/2005, Helsinki 2005

